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Advanced building control strategies like model predictive control and reinforcement learning can con-
sider forecasts for weather, occupancy, and energy prices. Combined with system and domain knowledge,
this makes them a promising approach to reduce buildings’ energy consumption and CO2 emissions. For
this reason, model predictive control and reinforcement learning have recently gained more popularity in
the scientific literature. Nevertheless, publications often lack comparability among different control algo-
rithms. The studies in the literature mainly focus on the comparison of an advanced algorithmwith a con-
ventional alternative. At the same time, use cases and key performance indicators vary strongly. This
paper extensively evaluates six advanced control algorithms based on quantitative and qualitative key
performance indicators. The considered control algorithms are a state-of-the-art model-free reinforce-
ment learning algorithm (Soft-Actor-Critic), three model predictive controllers based on white-box,
gray-box, and black-box modeling, approximate model predictive control, and a well-designed rule-
based controller for fair benchmarking. The controllers are applied to an exemplary multi–input–mult
i–output building energy system and evaluated using a one-year simulation to cover seasonal effects.
The considered building energy system is an office room supplied with heat and cold by an air handling
unit and a concrete core activation.
We consider the violation of air temperature constraints as thermal discomfort, the yearly energy con-

sumption, and the computational effort as quantitative key performance indicators. Compared to the
well-tuned rule-based controller, all advanced controllers decrease thermal discomfort. The black-box
model predictive controller achieves the highest energy savings with 8.4%, followed by the white-box
model predictive controller with 7.4% and the gray-box controller with 7.2%. The reinforcement learning
algorithm reduces energy consumption by 7.1% and the approximate model predictive controller by 4.8%.
Next to these quantitative key performance indicators, we introduce qualitative criteria like adaptability,
interpretability, and required know-how. Furthermore, we discuss the shortcomings and potential
improvements of each controller.
� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the publication of the Sixth Assessment Report’s second
part in February 2022, the international expert team Intergovern-
mental Panel on Climate Change emphasizes the need for immediate
action to stop climate change and drastically reduce emissions [1].
In this context, establishing a green building stock is a crucial step
toward climate neutrality.

Optimizing building energy systems’ operation is a promising
measure to reduce emissions from the current building stock
quickly. In recent years, the scientific community has put tremen-
dous effort into developing and comparing different optimal con-
trol approaches. Model predictive control (MPC) has proven to be
a promising method for many application scenarios. Implementing
MPC, different researchers achieve energy savings between 13% to
75% [2–7]. Even though many researchers have proven the poten-
tial, the transfer into practical applications is still lacking. Accord-
ing to [8], the small number of real-life applications is, among
other things, caused by missing know-how, high hard- and soft-
ware requirements, and the increased modeling effort compared
to conventional control techniques. To mitigate the disadvantages
and exploit the potential of MPC, the scientific community has
introduced many modifications to the methodology.

The modeling effort of MPC applications mainly depends on the
model development process [9,10]. Here, literature distinguishes
between white-box (WB), gray-box (GB), and black-box (BB) mod-
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Nomenclature

Symbol and Units
A area, m2

C thermal capacity, J
K

cp specific thermal capacity, J
Kg�K

d disturbances, -
f parameter, -
h heat transfer coefficient, W

K
k timestep, -
M prediction horizon MHE, -
_m mass flow, kgs
N prediction horizon MPC, -
Q heat, W
_Q heatflow, W
_q specific heatflow, W

m2

R heat transfer resistance, K�m
2

W
s schedule, -
T temperature, K
DT Change in Temperature, Ks
u control variable, -
x state variable, -
y controlled variable, -

Greek Symbols
a learning rate, -
c discount factor, -
� slack variable, K
s Polyak update, -
w split factor for radiation, -

Indices and Abbreviations
AHU air-handling unit
AMPC approximate MPC
ANN artificial neural network
ARMAX autoregressive-moving average with exogenous inputs
ARX autoregressive model with exogenous inputs
BB black-box
BBMPC black-box MPC
BES building energy system
CCA concrete-core activation
CSC constant setpoint control
DDPG deep deterministic policy gradient
DeePC data-enable predictive control
DQN Deep Q-Networks
DT decision trees
EKF extended Kalman filter

FMU functional mock-up unit
GB gray-box
GBMPC gray-box MPC
GPR Gaussian process regression
HVAC heating ventilation air conditioning
KPI key performance indicator
MDP Markov Decision Problem
MHE moving horizon estimation
ML machine learning
MPC model predictive control
MSE mean-squared error
OCP optimal control problem
OL online learning
PI proportional-integral
PID proportional-integral-derivative
RB rule based
RBC rule based controller
RC resistance–capacitance
RF random forests
RL reinforcement learning
RSC random setpoint control
SAC Soft-Actor-Critic
SVM support vector machines
UKF unscented Kalman filter
WB white-box
WBMPC white-box MPC
ad adapted
amb ambient
conv convection
dev devices
floor floor
hr heat recovery
ig internal gains
lb lower boundary
meas measured
occ occupancy
rad radiation
roof roof
set setpoint
sol solar
ub upper boundary
wall,int internal walls
wall,ext external walls
win windows
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els. While the former is based on full knowledge of the underlying
physical behavior of the target system, the latter solely calculates
statistical relations between in- and output using measurement
data [11,12].

Gray-box models are a trade-off between both modeling
approaches, for which the fundamental physical relations are
implemented and enriched by data-based information. All three
modeling approaches have been successfully applied in MPC appli-
cations [13].

According to [14], white-box MPC (WBMPC) show overall good
performance due to their accurate representation of the target sys-
tem. However, model development is costly, and detailed expert
knowledge is necessary. In addition, the process model is not adap-
tive, which is why changes in boundary conditions and system
periphery cannot be considered automatically. To face this chal-
lenge, adaptive black-box MPC (BBMPC) approaches are promising
[15–17]. Instead of relying on a detailed, physics-based model,
2

the process model is derived based on measurement data, usually
by applying system identification or machine learning techniques.
Consequently, the modeling effort is significantly lower than for
WBMPC approaches. Furthermore, online learning can easily be
integrated, addressing the challenge of changed boundary condi-
tions over the system’s lifetime [17,18]. However, high-quality
data is crucial and robust extrapolation cannot be guaranteed. A
compromise between the white- and the adaptive black-box
approach lies in the adaptive gray-box MPC (GBMPC) method. Pro-
viding a basic model structure for the process model reduces the
amount of measurement data and the necessary expert knowledge
compared to the BB and WB approaches [19,20]. Thus, GB models
are well-suited for optimization and control applications [21].
However, GBMPC can only capture effects that are considered in
the basic model structure.

Common disadvantages of the MPC methods described above
are the necessity of sophisticated data infrastructure and higher
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hard- and software requirements compared to conventional con-
trol techniques [8,10]. These are the reasons why rule-based con-
trollers are more popular and widespread in practice. In this
context, approximate MPC (AMPC) applications are promising
[22,23]. A machine-learning model is derived by learning the rela-
tion between the in- and output of an optimal controller. The
resulting machine-learning model is deployable on local hardware
[24]. Thus, the hardware and software requirements are signifi-
cantly lower, and the data infrastructure is simpler. The training
data results from the closed-loop operation of an MPC-controlled
system, the so-called teacher MPC [24]. This teacher MPC can the-
oretically follow any MPC modeling paradigm (black-, white-, or
gray-box), but white-box approaches are most common and ade-
quate [22,24,23]. Another method that has attracted increased
attention in the field of optimal control of building energy systems
in recent years is reinforcement learning (RL) ([25]). It addresses the
disadvantages of MPCs requiring high modeling effort, their lack-
ing adaptability (at least in conventional MPC methods) as well
as their limited maximum manageable complexity. In RL, an algo-
rithm (or software agent) learns a control strategy by interacting
with the system to be controlled. The standardized structure of
an RL application consists of a closed loop where the algorithm is
given a current state of the system, computes an action decision,
writes it back to the system, and receives a reward signal. The algo-
rithm’s goal is then to maximize the cumulative reward over time
([26]). By doing so, RL can improve its control strategy over time in
contrast to the traditional WBMPC and AMPC approach. We
observe that scientific research has already proven that many
methodologies and combinations of techniques exist that can con-
tribute to optimized building energy system operation. Further-
more, we conclude that each method has its unique advantages
and disadvantages and that all methods address different short-
comings of conventional or optimal control methods. However,
to the author’s best knowledge, the scientific literature is currently
lacking a detailed comparative study that benchmarks all of the
introduced advanced control methods using the same target sys-
tem under the same boundary conditions. Our contribution to
close these gaps is as follows:

� We present and compare the operation results of a white-box, a
gray-box, a black-box, and an approximate MPC- as well as a
reinforcement learning- and an advanced rule-based controller
for a single office zone.

� We evaluate the controllers based on a comparable tool set
using the same boundary conditions. We demonstrate it based
on a supervisory control problem applied to a simulation model.

� Rather than solely focusing on quantitative results, we intro-
duce soft criteria and discuss the involved engineering efforts
to highlight each method’s different advantages and
disadvantages.

1.1. Methods, use-case, and structure of this work

Fig. 1 illustrates the five advanced control methods that show
high research potential and are compared with each other in this
study. As a fair benchmark system, we develop an advanced RB
controller, which exploits the energy system’s flexibility. The con-
trol methods are applied to a single office zone. The zone’s energy
system comprises an air-handling unit air-handling unit (AHU) and
a concrete-core activation (CCA). The manipulated variables are the
AHU’s set temperature and the CCA’s heat flow. The local control
layer’s actuators translate the set points into direct actuator con-
trol signals. We evaluate the control quality of the presented
approaches using the thermal discomfort as integrated violation
of comfort constraints and the overall energy consumption.
3

In this study, we first give a brief overview of each method’s
state-of-the-art and relevant work in Section 2. The use-case and
control task is described in Section 3 followed by a detailed
description of each implemented controller in Section 4. We apply
the controllers to a single office zone for a full-year simulation in
Section 5 and discuss them in Section 6.
2. Advanced control strategies for building energy systems in
literature

2.1. Model predictive control for building energy systems

An MPC uses a mathematical process model to predict the sys-
tem’s reaction to the inputs. Then an optimizer calculates the opti-
mal trajectory of inputs for a given cost function. Typically, in the
context of building energy system (BES), the cost function covers
energy costs as well as thermal comfort. The latter is either consid-
ered by applying desired temperature ranges or more complex
indicators like the PMV index. The choice of comfort index can
strongly influence the complexity of the control problem. Exten-
sive work on (model predictive) comfort control for BES consider-
ing thermal and visual comfort as well as indoor air quality is
provided by Castilla et al. [27,28].

Crucial for the performance of the MPC is the underlying pro-
cess model. For BES, predominantly resistance–capacitance (RC)
models are used as process models. The capacitances describe
the various thermal masses linked to each other via heat transfer
resistances, such as air volumes or components. The energy supply
and distribution of the building are usually taken into account via
power balances as an algebraic system of equations in the process
model. [13,29].

To reduce the modeling effort of model-predictive building con-
trol, various publications use generic modeling libraries such as the
Modelica libraries Buildings [30], and IDEAS [14], which are trans-
lated into optimization models via toolchains such as ”TACO” [14].
Other examples are the Modelica library Aixlib [31] providing the
process model for a nonlinear distributed MPC by Mork et al.
[32] and the BRCM Matlab toolbox [33] which is used to imple-
ment an MPC for a swiss office building in [4].

However, the implementation effort is enormous, especially
due to the modeling and the tuning effort of the controller, which
is why the application of this control strategy is uneconomical in
most cases [4,34].
2.2. Adaptive gray-box model predictive control

To overcome the aforementioned modeling and parameteriza-
tion effort of WBMPC, adaptive control approaches are required.
Adaptive control mechanisms for classical control approaches have
been well-studied in recent decades. In contrast, adaptive model
predictive control, especially for the building sector, requires fur-
ther research ([35–37]). In adaptive GBMPC, a gray-box model
includes basic equations describing the general behavior of the
controlled system. At the same time, the parameters are continu-
ously re-calibrated based on measurements. Since the model struc-
ture is known and the model behavior is adaptable, gray-box
models are well suited for application in MPC. [21,20].

For instance, the authors of [38] develop a GBMPC for a thermal
zone that is supplied by a floor heating system and an air-handling
unit. An RC approach models the system, and the model parame-
ters are updated weekly. Compared to a proportional-integral-deri
vative (PID) controller, the proposed adaptive GBMPC leads to
22.2% lower energy consumption and increased indoor comfort.
Further, Zeng et al. [39] implement an adaptive GBMPC for an
HVAC system. The model is linear, and parameter estimation is



Fig. 1. This study’s advanced control methods are applied to the simulation model of a single office zone. The control variables include an AHU’s supply air temperature as
well as a CCA’s heat flow.
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performed periodically. Compared to a baseline controller, the con-
troller leads to 26.8% energy reduction. For online parameter esti-
mation at each time step, Kalman-filter-based approaches such as
the extended Kalman filter (EKF) ([40]) or the unscented Kalman
filter (UKF) ([41]) are commonly used [42]. Fux et al. [43] present
an adaptive GBMPC for a passive house and use an EKF for the
online estimation of the model parameters. The parameters con-
verge after three weeks and lead to a robust prediction. An UKFF
filter is used in [44] for an adaptive GBMPC for a building. A disad-
vantage of the EKF and UKF is that parameter constraints cannot be
explicitly considered. Here, the moving horizon estimation (MHE)
is a promising approach and has been considered for parameter
estimation in recent years. ([40,45]).

Kümpel et al. [46] present an adaptive GBMPC for heating and
cooling coil subsystems of air-handling units based on a gray-box
approach combined with an MHE. The adaptive GBMPC is applied
to different heating and cooling coil subsystems in a simulation.
The results show that the adaptive GBMPC leads to higher control
quality and less energy consumption than a well-tuned PI con-
troller. Additionally, the adaptive GBMPC needs no further tuning
when applied to the different heating and cooling coil subsystems.
Stoffel et al. [47] developed an adaptive GBMPC for a geothermal
field using an RC approach for the ground. The geothermal field
includes 41 probes, and a moving horizon estimator continuously
determines the states and model parameters. Taken together,
GBMPC with online parameter estimation is a promising approach.
In this paper, a GBMPC is developed for a thermal zone that
requires only a few input parameters and quickly adapts to the
actual system behavior.
4

2.3. Data-driven black-box model predictive control

To mitigate the costly and time-consuming modeling effort,
data-driven BBMPC approaches have increasingly become the
focus of scientific literature [15]. In BBMPC, a data-driven black-
box model represents the controlled system’s dynamical behavior.
Since physics-based models usually simplify and neglect certain
aspects, well-trained black-box models can even outperform them
[19]. Black-box modeling techniques that are often used in combi-
nation with model predictive control for buildings are, for example,
linear systems identification methods such as autoregressive
model with exogenous inputs (ARX), autoregressive-moving aver-
age with exogenous inputs (ARMAX), or 4SID [13,15,48], or
machine learning methods like Gaussian process regression
(GPR) [49,18,50], random forests (RF) [51,16,52], and artificial neu-
ral networks (ANNs) [53,54,17].

ANNs, in particular, show high accuracy in building modeling
[55,19]. Several researchers demonstrate the application of BBMPC
based on ANNs. Yang et al. [17] implement a BBMPC based on
ANNs for a real-life office building and a lecture hall, resulting in
energy savings of 58.5% and 36.7%, respectively. To solve the non-
convex optimization problem, the authors first employ the exhaus-
tive search method and then refine it with a gradient-based solver.
Due to the long computation times, the authors also mimic the
controller behavior with AMPC in another publication [56] (see
chapter 2.4).

Bünning et al. [53] use input-convex ANNs, a special architec-
ture of ANNs[57], to obtain a convex optimization problem when
applying a BBMPC to control the temperature of a bedroom. The
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controller maintains the room temperature within comfort bound-
aries while showing energy-saving behavior. The convex, nonlinear
optimal control problem (OCP) is solved by the black-box algo-
rithm COBYLA, which numerically approximates the gradients of
the OCP.

To provide gradients more efficiently, Jain et al. [54] couple the
automatic differentiation capabilities of Tensorflow with the
interior-point optimizer Ipopt [58]. Using this methodology, the
authors efficiently control the heating system of a two-story build-
ing resulting in energy savings of 5.7% compared to a baseline
controller.

An advantage of ANNs is that they are categorized as a paramet-
ric machine learning method. Therefore, compared with Gaussian
processes and random forests, the complexity of the OCP does
not depend on the number of considered data points [50]. This
facilitates the implementation of online learning by continuously
improving the process model with new measurements [17].

The major disadvantage of common ANNs is the resulting non-
linear, nonconvex optimization problem, which reduces the scala-
bility. It makes long-term simulations to test the controller time-
consuming [53,59].

This publication presents a newmethodology to efficiently inte-
grate ANNs in OCPs using CasADi[60] specialized for nonlinear
optimization. Additionally, we employ online learning to improve
the controller quality continuously.

2.4. Approximate model predictive control

A potential method that addresses the MPC’s drawbacks of high
hard- and software as well as data infrastructure requirements is
the concept of AMPC. For AMPCs, a simplified mathematical model,
which is deployable on low-level hardware, is used to imitate the
MPC’s optimized control actions. This process is known as rule
mining. In this context, statistical methods like logistic or linear
regression and machine learning-based methods like decision trees
(DT) and ANNs are promising for deriving mathematical models
[61,24]. Over the last years, a few studies have applied the AMPC
concept to BES. These studies can be categorized, e.g., regarding
the chosen machine learning method, the control task, and the
involved heating ventilation air conditioning (HVAC) components.
Because of their comprehensive model structure, which follows the
”if-then-else” concept commonly used for rule based controller
(RBC) applications, DTs are a popular rule mining method due to
their high interpretability [24,62–64]. Nonetheless, they tend to
generalize poorly and to fail in imitating more complex control
tasks [24]. Other more advanced ML methods comprise Random
Forests [65], time-delayed ANNs [24], AdaBoost [66], recurrent
ANNs [56] or support vector machines [67]. We focus on ANNs
due to their high performance in the above-listed studies and the
comparability with the other advanced control methods of this
work. Apart from that, most of the analyzed studies applying AMPC
have focused on decentral single zone control tasks with simplified
generation systems. For example, Klaučo et al. [68] imitate an ideal
heater and cooler. Furthermore, Žáčeková et al. [69] manage to
mimic the AHU damper position of an office room while Drgoňa
et al. [24] learn a gas boiler’s optimal on–off schedule. To the
authors’ best knowledge, there is no study investigating the simul-
taneous imitation of two interacting control actions, which
impedes robust control development. We close this gap by simul-
taneously imitating an AHU’s set temperature as well as the set
heat flow from a CCA.

2.5. Reinforcement learning for BES optimization

In recent years, more and more design principles and innova-
tions from the field of RL are being published, and state-of-the-
5

art algorithms, like the Deep Q-Networks (DQN) ([70]) for discrete
control actions or the Soft-Actor-Critic (SAC) for continuous control
actions, can quickly find a good and finally optimal control strategy
if the RL specific design principles are well addressed. These prin-
ciples concern in particular the proper parameterization of the
algorithm according to the task and the clean formulation of the
control problem in the form of a fully observable Markov Decision
Problem (MDP). However, a particular challenge lies in the clean
formulation of the MDP, which often stands in the way of its wide-
spread application in practice ([25]). In the scientific literature, on
the other hand, there is a growing number of successfully applica-
tion examples for different use cases.

In ([71]), the use of deep RL for HVAC control under dynamic
electricity prices was investigated. The authors show that the
DQN algorithm used is able to effectively utilize the thermal inertia
of a simulated building to save costs. Furthermore, a method for
state-space description is proposed for problems that are not fully
observable.

Another study on using RL for BES energy management applica-
tions was published by Brandi et al. ([72]). The authors investigate
the use of a DQN algorithm for the supply water temperature con-
trol of a simulated office building and compare different training
strategies and state-space variations. On the one hand, savings
between 5 and 12 percent are achieved compared to a rule-based
approach. On the other hand, the authors also show the impor-
tance of careful problem formulation when using RL.

Mathew et al. ([73]) used the latest design principles for the
applied DQN algorithm. They tested an application for smart home
energy management systems. In addition to the prioritized usage
of stored training data, convergence was improved by an innova-
tive exploration strategy and reward function. This allowed the
algorithm to learn quickly and efficiently to avoid electrical peak
loads.

A study with a stronger focus on indoor air quality was pub-
lished in ([74]). The authors demonstrate the good adaptivity and
applicability of the DQN algorithm. The algorithm achieves energy
cost savings compared to a benchmark MPC under some climatic
conditions.

Biemann et al. ([75]) apply a SAC algorithm to optimize the
operation of a simulated data center HVAC system. They also com-
pare four different model-free actor-critic algorithms. They show
that the trade-off between thermal stability and energy savings
is increasingly well handled during training by all four. While all
algorithms were robust to changes in the boundary conditions,
the SAC clearly showed the highest data efficiency and is therefore
proposed for the studied problem.

Another study on the use of SAC was published in ([76]). The
authors used the algorithm for cost optimization for heating an
office building using the thermal mass of the building as flexibility.
Applied to a simulated EnergyPlus model, the algorithm could save
costs (against an RBC baseline) after three simulated months with-
out violating thermal comfort. The algorithm was only provided
inputs covered by standard sensors in conventional office build-
ings. Other applications for the successful use of RL for HVAC con-
trol and coordinating the power purchases of multiple buildings in
a district can be found in ([77–79]). The following comprehensive
review articles are recommended to the interested reader ([80–
82]). In summary, the opportunities of RL for BES lie in the high
adaptivity, the comparatively low engineering effort, and the per-
formant processing of even very complex state spaces. On the other
hand, challenges lie in the relatively long training times and the
safe application and training on real systems.

In this paper, we use the state-of-the-art, model-free SAC algo-
rithm ([83]), with hyper-parameters tuned via a Bayesian hyper-
parameter optimization. Beyond the comparison with the other
methods, a significant contribution to the application of SAC lies
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in the inclusion of problem-optimized hyper-parameters with a
structured procedure. In most studies, this issue is addressed only
by a sensitivity analysis or not at all.

2.6. Benchmarking and comparison of advanced BES control strategies
in literature

The literature reviews above show that each of the considered
control approaches offers great potential. This raises the question
of which algorithm to choose for the individual control problem
for a control engineer.

Hence, there is significant effort in the literature to benchmark
control strategies among each other.

Picard et al. [84] derive linear state-space models from a build-
ing simulation model and apply model order reduction to obtain
different process models for an MPC. The controllers based on
the different process models are then compared based on quantita-
tive key performance indicators (KPIs). It is concluded that energy
consumption increases when the model mismatch is more
considerable.

A comparison of WB-, GB-, and BBMPC for a real-life building is
presented by Arroyo et al. [85]. In this publication, the black-box
model has the same representation as the gray-box model but is
not constrained by any physical insight. Therefore, all models have
a similar structure derived from RCmodeling while differing in size
and parameter selection. The authors state that increasing the
amount of physical detail in the model increases robustness in pre-
diction and control performance but should be carefully handled.

A comparison of solely BBMPC algorithms is provided by
Bünning et al. [59]. Here, the authors test BBMPC based on
input-convex ANNs, random forests, and physics-informed ARMAX
process models on a real-life building with one control input. In
this publication, the ARMAX model outperforms the other
approaches regarding sample efficiency and control quality.

In ([86]), the authors compared state-of-the-art continuous and
discrete RL algorithms for maximum PV self-consumption in an
optimal charging scheduling problem for electric vehicles. The
authors underline that although RL is outperformed by different
MPC (stochastic/deterministic) benchmarks, its performance is
near-optimal and superior to rule-based control with much lower
computational costs. They conclude that RL algorithms are a suit-
able technology for scalable and near-optimal electric vehicle
charging.

A similar study is presented by Ceusters et al. [87]. They com-
pare a mixed-integer MPC with perfect and non-perfect forecasts
to two RL agents on two case studies of multi-energy systems. In
this publication, the process model of the MPC is derived by lin-
earization of the plant model. In the considered decision-making
problem, the RL approach can outperform the MPC. This result is
explained by the linearization error of the MPCs’ process model.
Furthermore, the RL agent learns an On/Off policy instead of a con-
tinuous policy.

Arroyo et al. [88,89] compare GBMPC, RL, and RL-MPC, a com-
bined algorithm, to the Boptest benchmarking framework [90]. In
these publications, the GBMPC outperforms the other algorithms,
while the authors state that the GBMPC lacks learning. This means
it cannot adapt to changing conditions. Furthermore, as stated by
the authors, a limitation of the work is the lack of testing in
multi-input building systems, where RL agents are expected to
be more challenged. In our work, we contribute to these investiga-
tions by first providing adaptive GB- and BBMPC algorithms and
second testing on a multi-input building energy system.

Another analysis of advanced control algorithms for BES is car-
ried out by di Natale et al. [91]. Here, a gaussian process-based
BBMPC, an RL approach, and a robust, bilevel, data-enable predic-
tive control (DeePC) algorithm, each applied to a different real-life
6

use case, are compared qualitatively. The authors conclude that
none of the approaches can solve all BES control problems since
each methodology has drawbacks. The gaussian process-based
BBMPC is sample efficient but relies on more manual tuning. At
the same time, DeePC is straightforward to deploy but is only well
suited for linear problems. The RL algorithm reduces the needed
expert knowledge and is flexible but requires large amounts of
data, time-consuming offline training, and can cause online con-
straint violations.

2.7. Summary and Contributions

In summary, there is great interest in comparing different
advanced control approaches for BES in scientific literature. Never-
theless, to the author’s best knowledge, there is no extensive
benchmark considering all MPC modeling paradigms, RL, and
AMPC on the same use case using the same boundary conditions.
For a reproducible study design, we choose a standardized use
case. Furthermore, in the presented literature, the algorithms are
either compared quantitatively or qualitatively, considering softer
criteria. In this work, we pursue both a quantitative and a qualita-
tive benchmark. Here, we also discuss the engineering effort
involved in each method.
3. Use Case and control task

A detailed simulation model is used as a controlled system to
test the different control strategies under repeatable boundary
conditions. The controlled system consists of a parameterized ther-
mal zone according to ASHRAE140 test case 900. [92]. The thermal
zone is supplied with heat and cold using a CCA and an AHU, as
depicted in Fig. 2. The system is modeled in Modelica using the
AixLib-library1 [31]. The hydronic models used for the air-
handling unit and concrete core activation include all control-
relevant sensors and actuators and cover the dynamic and static
behavior at a high level of detail ([93]). The thermal zone model is
based on a thermal RC approach as described and validated by Laus-
ter et al. [94,95]. The AHU provides air at the desired temperature set
point Tahu;set 2 ½18 �C;25 �C� and includes a heater, a cooler, a heat
recovery, and two fans. The heater and cooler are controlled by
proportional-integral (PI) controllers, which adjust the mixing valves
of the heat and cold supply to reach the desired temperature set
point.

Furthermore, the air mass flow of the AHU can be adjusted by
controlling the fans. The hydronic circuit of the CCA is coupled to
the heat and cold supply via heat exchangers. The thermal power

transmitted to the CCA _Qcca;set 2 ½�5kW;5kW� is controlled by
adjusting the mass flow of the heat and cold supply via regulating
valves. Controlling the heat flow of a CCA is not state-of-the-art
since, usually, the inlet temperature is controlled via a heating
curve. Nevertheless, to assess the system’s energy consumption,
the mass flow of the CCA needs to be measured. This measurement
also allows measurement and control of the heat flow. The AHU’s
and CCA’s pumps are operated at a constant speed and deactivated
if there is no demand for heat or cold. The system is influenced by
weather and internal gains caused by humans, lights, and electrical
devices. For the latter, the office load profiles provided by SIA [96]
are used. The control task is to keep the air temperature of the
thermal zone within the comfort constraints (Table 1) while min-
imizing the thermal energy consumption. Since an ideal heat and
cold source is used, heat and cold consumption are assumed to
be equally expensive. In a real setting, the AHU would typically
require a higher temperature difference, making operation more



Fig. 2. Schematic representation of the thermal zone.

Table 1
Comfort constraints for the rooms’ air temperature.

Time Tair;min Tair;max

Mon.-Fri. 7:00–19:00 21 �C 23 �C
Mon.-Fri. 19:00–7:00, Sat.-Sun. 17 �C 27 �C
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expensive than operating the CCA. The task’s challenge is integrat-
ing fast (AHU) and slow dynamics (CCA) and conflicting goals. Fur-
thermore, the system controller relies on imperfect subsystem

controllers to reach the set points Tahu;set and _Qcca;set while reacting
to the various disturbances.

4. Implemented Controllers

4.1. Rule-based controller

For a fair benchmark with a baseline controller, we design a RB
controller which exploits the comfort constraints similar to an MPC
and deals with heating and cooling. To account for the thermal
inertia of the system, the comfort constraints are adapted for the
RB controller, as displayed in Fig. 3. The RB controller uses two PI
controllers for the CCA, PIcca;cool and PIcca;heat. PIcca;cool is set to follow
Fig. 3. Adapted comfort constraints for the rule based controller.

7

the adapted upper boundary Tub;ad and computes the cooling power

of the CCA _Qcca;cool;set 2 ½�5kW;0kW�. Analogously, PIcca;heat follows

Tlb;ad and computes the heating power _Qcca;heat;set 2 ½0kW;5kW�.
Thus, the setpoint for the CCA calculates

_Qcca;cool;set þ _Qcca;heat;set ¼ _QCCA;set ð1Þ

The AHU is controlled by a single, limited PI controller, which pro-
vides the setpoint Tahu;set 2 ½18 �C;25 �C� depending on the measured
room temperature.

Tahu;set ¼ PIahuðTair;meas; Tair;setÞ ð2Þ

With:

Tair;set ¼
Tlb;ad; if Tair;meas 6 Tlb;ad þ 0;5
Tub;ad; if Tair;meas P Tub;ad � 0;5

Tahu;hr;out else

8><
>: ð3Þ

Here, Tahu;hr;out denotes the outlet temperature of the heat recovery
system. Using this setpoint deactivates the operation of the heater
and cooler. The latter is considered to maximize the free float oper-
ation of the AHU, saving energy. The tunable parameters of the con-
troller are the P and I values of six individual PI controllers, the
threshold for the AHU control, and the slope of the adapted comfort
constraints. In conclusion, the RB controller exploits the comfort
constraints by following the relaxed comfort constraints and
enabling free float operation in between. Compared to the state-
of-the-art, this controller is rather complex. Nevertheless, it repre-
sents a fairer benchmark to evaluate the performance of the
advanced control strategies presented in this paper.
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4.2. Detailed white-box MPC

The second investigated controller is a detailed WBMPC using
an RC model with the same structure as the plant model. The
model considers six thermal capacities; air volume (air), internal
walls (wall,int), external walls (wall,ext), concrete core activation
(cca), roof (roof), and windows (win). The capacities i and j are con-
nected via the heat transfer coefficients hij (4). The heat transfer
coefficients take radiation, convection, and conduction into
account. In Eq. (4) the term _Qu;d sums up the influence of distur-
bances and inputs. This term is introduced in Eq. (5).

Ci
dTi

dt
¼

X
hij � Tj � Ti

� �þ _Qu;d ð4Þ

_Qu;d ¼
_Qig;conv þ _mair;ahu � cp;air Tahu;set � Tair

� �
; for i ¼ air

_Qcca;set; for i ¼ cca

hamb;i Tamb;i � Ti
� �þ wi;sol � _Qsol þ wi;ig � _Qig;rad else

8>><
>>:

ð5Þ
The air volume is affected by the convective internal gains _Qig;conv

and the enthalpy flow from the AHU. For the process model of the
WBMPC, perfect subsystem controllers are assumed. Therefore,
the enthalpy is calculated with the temperature setpoint Tahu;set .
The same assumption is used for the CCA, which is affected by
_Qcca;set . The other capacities are affected by radiative internal gains,
heat transfer to the environment, and solar radiation. The solar radi-

ation _Qsol entering through the windows is allocated to the individ-
ual components based on view factors wi;sol. The radiative internal

gains _Qig;rad are allocated in the same way, using the view factors

wi;ig . The internal gains _Qig;conv and _Qig;conv are functions of air tem-
perature as well as schedules for light slight , occupancy socc and
devices sdev [96]. To calculate the heat transfer to the environment,
corrected ambient temperatures Tamb;i for each component are used.
These corrected temperatures are determined by considering radia-
tive effects based on the component’s orientation. These tempera-
tures can be calculated in advance in the control loop based on
weather forecasts.

To minimize the overall energy consumption in the controller, a
model of the AHU’s thermal power is needed. For this reason, an
empirical, linear expression (6) considering the heat recovery is
derived from simulation data to approximate the complex non-
linear behavior of the AHU.

_Qahu ¼ _mair;ahu � cp;air Tahu;set � 0:95 � Tair þ 1:05 � Tamb

2

� �
ð6Þ

In total the process model has six states x, three algebraic variables
y, two inputs u, and nine disturbances d (Eq. 7a–14d).

x ¼ ½Tair; Twall;int; Twall;ext ; Troof ; Twin; Tcca� ð7aÞ
y ¼ ½ _Qahu; _Qig;rad; _Qig;conv � ð7bÞ
u ¼ ½Tahu;set ; _Qcca;set� ð7cÞ
d ¼ ½Tamb; Tamb;roof ; Tamb;win; Tamb;walls; socc; slight; sdev ; _Qsol; _mair;ahu� ð7dÞ
The detailed white-box controller uses the linear process model
presented above in an economic MPC scheme (Eq. 8a–8h). Here,
the violation of temperature constraints � is penalized for maintain-
ing comfort over the prediction horizon N. Furthermore, the thermal
powers of the CCA and the AHU are considered in the cost function
to minimize energy consumption. The last term in the cost function
considers the change in decision variables to prevent the oscilla-
tions of the manipulated variables.
8

min
u;x;�

XN�1

k¼0

�2k �W þ _Q2
ahu;k � Rþ _Q2

cca;set;k � Rþ Du2
k � dR

� �
ð8aÞ

s:t: xkþ1 ¼ f ðxk;uk;dkÞ ð8bÞ
yk ¼ gðxk;uk;dkÞ ð8cÞ
umin 6 uk 6 umax ð8dÞ
Tair;min;k � �k 6 Tair;k 6 Tair;max;k þ �k ð8eÞ
x0 ¼ x̂0 ð8fÞ
0 6 �k ð8gÞ
8k 2 ½0; . . . ;N � 1� ð8hÞ

The controller is implemented in PYOMO [97] using a colloca-
tion discretization scheme and Gurobi [98] as a optimizer. The tun-
ing parameters of the WBMPC are the prediction horizon and the
time step size, which are chosen to be 8h and 15min, respectively,
and the weights of the cost function. The weights are
W ¼ 250;R ¼ 1, and dR ¼ 2. If the operating costs were different
for the CCA and the AHU, the terms could be weighted differently.

4.3. Adaptive gray-box MPC

The third considered controller is an adaptive GBMPC based on
a gray-box model. The general MPC formulation is equal to the
WBMPC. However, the model equations, states, and considered
disturbances of the GBMPC differ from the WBMPC and are
described in the following. A gray-box model includes physics-
based equations that reproduce the general behavior of the con-
trolled system. However, the exact behavior of the model is
described by parameters that have to be determined based on
measured data. We implement an RC model to model the investi-
gated thermal zone. Reynders et al. ([99]) showed that an RCmodel
with two capacities and two resistances leads to acceptable model
behavior. Based on this approach, we additionally consider the
mass of the internal walls and the concrete core activation result-
ing in an RC model with four capacities and four resistances. Radi-
ation and direct heat transfer between the walls is neglected. The
developed gray-box model is given in Eq. 8–12. Here, the parame-
ters Cair;Cwall;int;Cwall;ext and Ccca denote the capacity of the air, the
inner wall, the outer wall and the concrete core activation. The
parameters 1=Rcca;1=Rwall;int;1=Rwall;ext and Rcca denote the resis-
tances of the concrete core activation, the inner wall and the outer
wall, respectively. Further, temperatures of the concrete core acti-
vation Tcca, the interior wall Twall;int and exterior wall Twall;ext as well

as the solar radiation _qsol;dir and the internal gains _Q ig are consid-
ered. The areas of the floor, inner wall, exterior wall and the win-
dows are constant and have to be set by the user. The parameter
f rad corresponds to the shading and transmissivity of the windows.
The occupation times socc are based on a fixed profile.

Cair � dTair

dt
¼ cp � _mair;ahu � ðTahu;set � TairÞ þ 1=Rcca � Afloor � ðTcca

� TairÞ þ 1=Rwall;int � Awall;int � ðTwall;int � TairÞ
þ 1=Rwall;ext � Awall;ext � ðTwall;ext � TairÞ þ _qsol;dir

� Awinf rad þ _Q ig � socc ð8Þ

Cwall;int � dTwall;int

dt
¼ 1=Rwall;int � Awall;int � ðTair � Twall;intÞ ð9Þ

Cwall;ext � dTwall;ext

dt
¼ 1=Rwall;ext � Awall;ext � ðTair � Twall;extÞ

þ 1=Rwall;ext � Awall;ext � ðTamb � Twall;extÞ ð10Þ

Ccca � dTcca

dt
¼ _Q cca;set þ 1=Rcca � Afloor � ðTair � TccaÞ ð11Þ
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_Q ahu ¼ _mair;ahu � cp;air Tahu;set � Tair
� � ð12Þ

The gray-box model has four states x, one algebraic variable y, two
inputs u, and four disturbances d (Eq. 7a–14d).

x ¼ ½Tair; Twall;int; Twall;ext ; Tcca� ð14aÞ
y ¼ ½ _Qahu� ð14bÞ
u ¼ ½Tahu;set ; _Qcca;set� ð14cÞ
d ¼ ½Tamb; _qsol;dir; _Q ig; _mair;ahu� ð14dÞ
Similar to the WBMPC, the objective function includes the deviation
from the comfort range �k (a1 ¼ 1), the change of the control vari-
ables D _Q cca;set (a2 ¼ 0:0355) and DTahu;set (a3 ¼ 26) and the con-
sumed energy of the CCA Q cca and AHU Q ahu (a4 ¼ a5 ¼ 0:1).

JGB;MPC ¼
XN�1

k¼0

ða1 � �2k þ a2 � D _Q2
cca;set;k þ a3 � DT2

ahu;set;k þ a4

� _Q cca;set;k þ a5 � _Q ahu;kÞ ð15Þ
To estimate the unknown capacities, resistances, the parameter f rad
and the internal gains as well as the current temperature of the
walls and the CCA, an MHE based on the model presented above
is used. The objective of the MHE is given in Eq. 16.

JGB;MHE ¼
X0
t¼�M

ðTair;k � Tair;meas;kÞ2 ð16Þ

þ c1 � ðRcca � Rcca;actÞ2 ð17Þ

þ c2 � ðRwall;int � Rwall;int;actÞ2 ð18Þ

þ c3 � ðRwall;ext � Rwall;ext;actÞ2 ð19Þ

þ c4 � ðCair � Cair;actÞ2 ð20Þ

þ c5 � ðCcca � Ccca;actÞ2 ð21Þ

þ c6 � ðCwall;int � Cwall;int;actÞ2 ð22Þ

þ c7 � ðCwall;ext � Cwall;ext;actÞ2 ð23Þ

þ c8 � ðf rad � f rad;actÞ2 ð24Þ

þ c9 � ð _Q ig � _Q ig;actÞ
2 ð25Þ

The objective includes the deviation between the estimated tem-
perature Tair;k and the past measured temperature Tair;meas;k. Further,
the deviation of the estimated parameters from the previous esti-
mate (subscript act) is penalized. The parameters c1 to c2 are chosen
based on the initial guess R;Ci;ini of the quantities: ci ¼ 1=R;C2

i;ini. The
initial guess is calculated based on the geometry and material prop-
erties. The MHE is performed with two different time horizons M:
An MHE with a horizon of 6 h at each MPC step is executed to real-
ize short computation times. Additionally, an estimation with a
longer horizon of 72h is performed every 48h to consider the
long-term behavior as well. In this way, the overall computational
times can be kept small while considering a sufficient long estima-
tion horizon.

As initial parameters of the GBMPC, the floor area and height
are needed to calculate starting values for the capacities of the
walls and the CCA. The air capacity is assumed to be constant at
the starting value since the air capacity is small compared to the
9

capacity of the walls and the CCA. The resistances are initialized
with common default values. As in the case of the WBMPC, the
GBMPC’s tunable parameters are the prediction horizon (8h), the
step size (15min), and the cost function’s weights. Further, a per-
fect forecast of the occupation times soccand weather is assumed.

4.4. Data-Driven black-box MPC

For the BBMPC, we use ANNs to model the quantities of interest
_Qahu and Tair . To account for slow system dynamics caused by ther-
mal inertia, the input features of the ANN consider an individual
lag n. This means that a feature’s last n values are used to calculate
the neural network’s output. Thus, the system dynamics are
approximated by Eq. 29a and 29b.

DTair;k ¼ f ann xk; xk�1; . . . ; xk�n;uk;uk�1; . . . ;uk�n;dk;dk�1; . . . ; dk�nð Þ
ð26aÞ

_Qahu;k ¼ gann xk; xk�1; . . . ; xk�n;uk;uk�1; . . . ;uk�n; dk; dk�1; . . . ;dk�nð Þ
ð26bÞ

The features and lags used to predict DTair and _Qahu are summarized
in Table 2. In comparison to the WBMPC and the GBMPC, fewer
variables are considered. The only considered state is the room tem-
perature. The only algebraic variable is the power of the air han-
dling unit. The internal gains are approximated by learning the
influence of the time of the day and the day of the week. These
are encoded as sinus and co-sinus functions, with frequencies of
24h and 7d, respectively. Furthermore, only the most significant
weather quantities, the ambient temperature Tamb, and the direct
solar radiation _qdir are considered. This results in the following state
space:

x ¼ ½Tair� ð27aÞ
y ¼ ½ _Qahu� ð27bÞ
u ¼ ½Tahu;set; _Qcca;set � ð27cÞ
d ¼ ½Tamb; _qsol;dir; tday; tweek� ð27dÞ
The optimization problem of the BBMPC is structured in the same
way as in the case of the WBMPC. Only the dynamic constraints
(8b) and (8c) are changed to (29a) and (29b). Furthermore, the inte-
gration step (28) is introduced.

Tair;kþ1 ¼ DTair;k þ Tair;k ð28Þ
The optimization problem is implemented in Casadi [60] and solved
with the non-linear interior point solver Ipopt [58] using ’ma57’ as a
linear solver. Since the prediction of _Qahu depends on the air tem-
perature’s prediction, a multiple shooting approach [100] is chosen
as a transcription method for the optimization problem.

To integrate ANNs in Casadi, the authors developed an interface
to Keras [101]. Thus, specialized training algorithms like Adam
[102] from Keras can be used, while the optimization is performed
in Casadi. This enables faster and more efficient optimization com-
pared to gradient-free approaches. Thus, a prediction horizon of 8h
with a time step size of 15min analogous to the WBMPC is chosen.
The weights are also the same as in the case of the WBMPC. There-
fore, the tunable parameters of the BBMPC are similar to the
WBMPC. Additionally, we manually tuned the selected features,
which should be automized by feature selection methods in the
future.

4.4.1. Training and data generation
To successfully apply the BBMPC, the ANNs must accurately

approximate the plant model. For this reason, the data generation
process is crucial. We generate the training data with two
strategies:



Table 2
Features and lags considered to predict the quantities of interest in the BBMPC.

DTair _Qahu

Feature considered lag considered lag

Tair x 4 x 3
Tamb x 4 x 3
Tahu;set x 3 x 3
_Qcca;set x 6 - -
_qsol;dir x 3 - -

time of the day x 3 - -
day of the week x 3 - -
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� constant setpoint control (CSC)
� random setpoint control (RSC)

The first strategy controls the room temperature to a constant set-
point within the comfort boundaries. The second strategy sets a
new random room temperature setpoint within the comfort bound-
aries every two hours. For both strategies, simple PI controllers are
used to compute the AHU and the CCA setpoints.

Additionally, online learning can be used to improve the con-
troller continuously. In this case, the model is retrained with oper-
ation data generated by the BBMPC. The retrained model is then
passed to the BBMPC for use in the following period. Using online
learning, the controller adapts to changing environmental condi-
tions. In this work, we will investigate two different controllers;
one trained for only two weeks in winter and then applying online
learning. The other is trained in two winter and two summer
weeks and doesn’t employ online learning. The data sets are sum-
marized in Table 3. The data sets are split into a training (70%), val-
idation (15,%), and test set (15%). In a separate study, the influence
of training data quantity and quality should be analyzed further.
Nevertheless, the data are sufficient in this work to train a working
controller. We perform a brute force hyperparameter optimization
to determine the ANN architectures. Thus, we train several neural
networks with a different number of hidden layers and neurons on
each layer and choose the most accurate one on the test set. The
mean-squared error (MSE) is used as loss function. An ANN with
one hidden layer and 16 neurons is trained to predict the room
temperature change. The second ANN approximating the AHU
power has one hidden layer and eight neurons. Both ANNs use a
sigmoid activation function and a batch-normalizing layer as the
input layer.

4.5. Approximate white-box MPC

The AMPC approach uses the WBMPC as teacher controller (see
Section 4.2).

According to the state of research, different ML algorithms are
suitable as imitation methods. As discussed in Section 2.4, we focus
on ANNs as machine learning (ML) method due to their high per-
formance in mimicking the teacher MPCs. For both AMPCs, we
apply the Python-based ML framework AddMo [103]. AddMo
enables the automatic execution of necessary steps when working
with ML models, ranging from data scaling, feature engineering,
and selection to model selection and hyperparameter tuning. As
Table 3
Data sets used for the training of the DDMPC’s process model.

Data Initial dat

set Total Winter

1 28d 7d CSC/ 7d RSC
2 14d 7d CSC/ 7d RSC
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this work solely focuses on ANNs, we skip the model selection step.
We use a full-year simulation of the WBMPC’s in- and outputs as

input data. The WBMPC’s outputs, namely Tahu;set and _Qcca;set , are
the targets while its inputs are the features in the AMPC context.
The following functional approximation can be deduced:

DTahu;set ¼ f ann xk; xk�1; . . . ; xk�n;dkþn; . . . ; dkþ1;dk;dk�1; . . . ;dk�nð Þ
ð29aÞ

_Qcca;set;k ¼ gann xk; xk�1; . . . ; xk�n; dkþn; . . . ;dkþ1; dk;dk�1; . . . ; dk�nð Þ
ð29bÞ

Here, di also includes synthetically generated features like the time
of day or weekday, which are helpful in the context of machine
learning. In the case of Tahu;set, the ML-algorithms predict the set-
point difference compared to the previous time step’s setpoint,
i.e., DTahu;set, instead of predicting its absolute value. In this way,
we prevent the tuning of purely autoregressive models, which could
lead to poor closed-loop control performance as the setpoint tends
to dominate the other features. For the manipulated variable _Qcca;set ,
two types of models are compared in this study. The first model also
predicts D _Qcca;set instead of the absolute value _Qcca;set while the sec-

ond predicts _Qcca;set .
The features can be distinguished into states and disturbances.

Among the former are solely values of the current or previous time
steps. This corresponds to the idea of a simplified integration of
local controllers based on measurement data without systemmod-
eling and its state predictions. Therefore, the states are integrated
as conventional and lagged features. We consider previous, cur-
rent, and future values for the disturbances corresponding to
lagged, conventional, and lead features. Table 8 summarizes all of
the considered and finally selected features for the two manipu-
lated setpoints D _Qcca;set and Tahu;set of interest. We did not include

feature selection for the former model to predict _Qcca;set as the
results are not promising.

All in all, the AMPC approach comprises the following tuner
parameters which would need adaptation when applying to
another system:

� Number and type of features to be included (compare with
Table 8)

� Potential consideration of synthetic features such as time of
day, date of year, etc.
a Online

Summer Learning

7d CSC/ 7d RSC -
- x
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� Amount of lags and leads for each feature (compare with
Table 8)

� Training and testing period: in this study, we used identical test
and training sets to make the controller more comparable

� Upper and lower thresholds for supplementary heuristic con-
troller (see Table 4)

4.5.1. Supplementary heuristic control
To enable robust control, we complement the AMPC-based con-

trol by a supplementary, rule-based controller. This heuristic
adjustment controller checks if the AMPC’s output is between pre-
defined ranges. More specifically, the controller limits the AMPC’s
output based on predefined upper and lower output thresholds
and maximum changes between two time steps. The selection of
these thresholds is based on the WBMPC’s output range. Table 4
lists the resulting thresholds for the heuristic controller.

4.5.2. Application and open-loop training results
Overall, both models for the setpoint prediction is based on

35.040 training samples. The training and test period is the same
to enable a fair comparison with the other methods. Consequently,
an upper benchmark for the AMPC case is investigated. As
described in the previous section, the selected open-source tool
AddMo includes an automatic feature selection process. For imitat-
ing the controller output for DTahu;set, the tool selects 41 of a max-
imum of 59 features for the final model. It results in good open-
loop accuracy, yielding an R2 of 0.89 and a mean absolute error
of 0.083. The best hyperparameters for the ANN are two layers
with 65 and 33 neurons, respectively. The overall computation
time of the training process is 149min. The open-loop training to

predict D _Q cca;set results in similar high accuracies like the one for

DTahu;set. For the whole year, an R2 of 0.88 and a mean absolute
error of 0.006 is realized. In contrast to the other target, of the max-
imum of 80 potential features, only nine are chosen by the algo-
rithm. Among the selected features are the lag of D _Q cca;set, its
absolute value of the previous time step, and the room air temper-
ature. Even though a reduced number of features is favorable from
a practical point of view as the deployment is simpler and hard-
ware interaction reduced, the closed-loop performance is not
robust. The sole dependence on the manipulated variables yields
a highly autocorrelated model which does not succeed in robust
closed-loop control despite good open-loop performance.

In order to implement a robust closed-loop controller, we pre-

dict _Q cca;set instead of D _Q cca;set and omit the feature selection pro-
cess. We skip the feature selection for this target because even
though good open-loop performance was realized by applying fea-
ture selection and consequently only using a limited amount of
features, the closed-loop performance was not robust. This is
why we integrate all of the possible features listed in Table 8. How-
ever, we highlight that feature selection should be an integral part
of the training process as it generally simplifies the resulting model
and is good practice in machine learning applications. For the pre-

diction of _Q cca;set, however, including all potentially relevant fea-
tures yielded a better closed-loop control performance than
using the features chosen by automated features selection carried
out with AddMo. This highlights that the conventional training
process, that evaluates open-loop prediction accuracy, does not
Table 4
Thresholds of supplementary heuristic controller for AMPC.

_Q cca;set in kW Tahu;set in K

Max. threshold 4.3 298.15
Min. threshold �4.3 291.15
Max. difference 1.2 5.5
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guarantee robust closed-loop performance. Overall, in the case of
predicting _Q cca;set, we achieve an R2 in open-loop prediction of
0.99 and a mean absolute error of 0.046. The number of features
is 42, which is lower than the ones for predicting DTahu;set. We
did not include the total number of 80 features in the training pro-
cess for _Q cca;set because the training results were poor and the com-
putation time too high, in this case (see Table 8). The
hyperparameter optimization with AddMo results in an ANN archi-
tecture of two layers with 55 and 54 neurons, respectively. The
computation time for training is 107min. The shorter duration is
caused by the omission of the feature selection process.
4.6. Reinforcement learning

We compare the presented MPC controllers to the model-free
Reinforcement Learning Algorithm, SAC. SAC is a state-of-the-art
algorithm first described in a publication in 2018 ([83]). SAC repre-
sents an evolution of the deep deterministic policy gradient
(DDPG) ([104]) algorithm. Thus, SAC is also based on the actor-
critic architecture and is suitable for learning continuous control
problems with n-dimensional action spaces. For this purpose, the
actor-critic architecture is based on several neural networks inter-
acting. A so-called critic network learns to approximate the state-
action-value function ([105]), while a so-called actor network com-
putes the n-dimensional continuous action. The output of the critic
network is used to calculate the gradients for the actor’s
stochastic-gradient-descent training process. Thus, the continuous
actor is continuously trained by the progressively improving critic.

Fig. 4 shows a schematic representation of the interaction
between the actor- and critic network and the environment. The
DDPG was already equipped with some stability extensions pre-
sented in ([70]), namely target networks (which remain frozen
over multiple interactions to avoid instabilities caused by oscillat-
ing policies and replay buffers serving as a static, growing training
sample memory). While DDPG has long been the best-performing
model-free continuous Reinforcement Learning approach, it has
been outperformed by SAC in many application scenarios in recent
years. SAC, unlike DDPG, optimizes a stochastic policy that allows
taking uncertainties in the environment into account. The second
key difference is the entropy-based exploration mechanism of
SAC. While the DDPG used a defined reduction of the probability
of random actions for exploration, SAC extends the objective func-
tion with an entropy term that rewards actions that explore previ-
ously unseen state-action-space regions. The increasing system
Fig. 4. Schematic structure of the actor-critic approach.
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knowledge thereby is itself rewarded. This allows SAC to explore in
a much more application-specific way and quickly achieve good
results. Like the DDPG, the behavior of SAC is also determined by
adjustable hyper-parameters, which we have determined for the
use case with a Bayesian hyper-parameter optimization provided
in the HyperOpt package ([106]). The hyper-parameters found are:

� Discount factor (c) = 0.733. Determines the weighting of imme-
diate against future rewards.

� Learning rate (a) = 0.0035. Determines the update of the ANN in
each training cycle and therefore how much the policy is
adjusted.

� Polyak update (s) = 0.002. A SAC specific hyper-parameter
which determines the degree of soft update of the target
network.

� Batch size = 200. Determines the training samples used in each
ANN training cycle.

� Buffer size = 758,600. Determines the memory capacity for past
observation from the environment used training the ANN.

For stability reasons, we do not use a quadratic objective function.
Instead, we use a tailored linear objective function for the SAC, for-
mulated in Eq. 30. According to this equation, at each time step, the
SAC algorithm receives a negative signal proportional to the viola-
tion of the comfort temperature range and a negative signal propor-
tional to the thermal energy used. The algorithm’s task is to find a
policy that maximizes the cumulative reward signal over time by
learning the relationship between the possible actions and the
function.

reward ¼
�500 � jTlb;rel � Tair;measj � 50 � _Qtotal; if Tair;meas 6 Tlb;rel

�500 � jTub;rel � Tair;measj � 50 � _Qtotal; if Tair;meas P Tub;rel

�50 � _Qtotal; else

8><
>:

ð30Þ
Next, to the costs function, the tuning of the algorithm involves the
feature selection for the state vector. The state vector (what the
algorithm receives in each time step) is shown in Table 5 and is rep-
resented by a combination of current, historical, and predicted sys-
tem variables. For the current and historical variables, the indoor air
temperature and the AHU set temperature with lags of four are
included. Furthermore, the AHU set temperature with it’s last four
values, the set temperature of the CCA with the last six values,
the heating and cooling energy, each with the last three values,
and the time of the day (sinoidal signal) with the last three values
along with the day of the week as one integer, are included. For
the predicted values, the solar radiation and the outdoor tempera-
ture are included along with the upper and lower comfort temper-
ature bounds, with an eight-hour forecast horizon and a half-hour
resolution. The state vector, therefore, has 94 entries and combines
information regarding the current system dynamics and the con-
straints prediction.
Table 5
Features and lags considered to in the state-space of the SAC algorithm.

Feature considered lag prediction

Tair x 4 -
Tahu;set x 4 -
_Qcca;set x 6 -
_Qheating

x 3 -

_Qcooling
x 3 -

time of the day x 3 -
day of the week x - -

Tlb;rel x - 16
Tub;rel x - 16
Tamb x - 16
_qsol;dir x - 16
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The possible actions are the AHU set temperature (between 18
and 25 �C) and the CCA heating or cooling energy (between �5 and
5 kW). Both the state vector and the action are normalized
between �1 and 1 to be processable by the SAC algorithm.

The algorithm was trained on the system for two years before
being tested for controller comparison in the third year. While sev-
ere comfort and energy efficiency limitations were observed in the
first half of the first year, the interaction stabilized after that. In the
second year, the RL controller almost had the same performance as
in the third year.
5. Application of the implemented controllers

In the following, we evaluate the performance of the presented
controllers in a one-year closed-loop simulation. The controlled
system model is exported as a functional mock-up unit (FMU)
and simulated in Python using the fmpy package to provide a stan-
dardized interface. For quantitatively benchmarking the perfor-
mance, the KPIs energy consumption, thermal discomfort, and
the computation time of the controllers are considered. Here, the
thermal discomfort is expressed as an integrated violation of com-
fort constraints over the whole year in Kh.

Compared to the well-tuned RB controller, all investigated
approaches perform better, leading to energy savings of 4.9%
(AMPC) to 8.4% (BBMPC) and a reduction of thermal discomfort
of 7.8% (AMPC) to 83.8% (BBMPC). The energy savings referred to
the RB controller and thermal discomfort are displayed in Fig. 5.
The black-box model predictive controller performs best in terms
of energy consumption. At the same time, the online-learning
BBMPC (BBMPC-OL) also outperforms the WBMPC concerning total
discomfort.

These results reflect the model accuracies displayed in Table 6.
For the air temperature prediction, we evaluate the one-step-
ahead prediction error (k = 1) as well as the prediction error after
five (k = 5), ten (k = 10), and 20 (k = 20) time steps. The accuracy is
evaluated based on the controllers’ forecasts over the year. Espe-
cially the nonlinear characteristics of the AHU are approximated
more accurately by the BB models, leading to lower overall energy
consumption. Furthermore, the GBMPC and WBMPC assume per-
fect subsystem controllers to reach the setpoints Tahu;set and
_Qcca;set . Looking at the one-step-ahead prediction error, the GBMPC
profits from the initialization by the estimator. This information
leads to a very low error.

Nevertheless, the prediction error increases with the prediction
horizon due to the simplified model structure. The WBMPC shows
Fig. 5. Total energy consumption and discomfort of the controllers in a one-year
closed loop simulation (BBMPC/ black-box MPC, BBMPC - OL/ online learning black
box MPC, WBMPC/ White-box MPC, RL/ Reinforcement Learning, RB/ Rule-based
controller, GBMPC/ Gray-box MPC, AMPC/ Approximate MPC).



Table 6
Accuracy of the WB-, GB-, and BB process models.

WB GB BB BB - OL

RMSE _Qahu 0.682kW 0.724kW 0.139kW 0.125kW

RMSE Tair (k = 1) 0.020K 0.019K 0.044K 0.032K
RMSE Tair (k = 5) 0.112K 0.187K 0.132K 0.107K
RMSE Tair (k = 10) 0.150K 0.382K 0.227K 0.173K
RMSE Tair (k = 20) 0.360K 0.748K 0.416K 0.407K
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the highest accuracy with an increasing prediction horizon. In con-
trast, the online-learning BBMPC achieves the highest accuracy
after five time steps, probably caused by the consideration of
imperfect subsystem controllers. The latter allows the BBMPC-OL
to react accurately in the short term, resulting in the lowest
discomfort.

The model-free RL algorithm shows a comparable energy con-
sumption to the GB- and WBMPC with a similar discomfort as
the basic BBMPC. The AMPC does not approximate the WBMPC
with perfect accuracy and therefore shows worse control quality
but still outperforms the rule-based controller.

To evaluate the effects of different seasons, the weekly energy
consumption and discomfort are plotted in Fig. 6. Compared to
the RB controller, the advanced control strategies especially save
energy in periods with low overall energy consumption. These
are typically periods with mixed cooling and heating demand,
where the advanced controllers profit from their anticipating
behavior. The weekly discomfort differs strongly among the con-
trollers. Through the adaptive behavior, the online learning BBMPC
improves quickly in the first weeks and then converges to low
thermal discomfort. The RL-controller also demonstrates a low dis-
comfort, except when there is a high heating demand at the begin-
ning and end of the year.

In contrast to the WB- and BBMPC, the RL controller penalizes
comfort violations linearly. Therefore, comfort violations are more
tolerated in periods with high energy demand due to the cost func-
tion. Thus, it is expected that further tuning of the RLs’ cost func-
tion is likely to improve the results further. The AMPC shows few
peaks in thermal discomfort, especially in cooling periods, indicat-
ing poor approximation accuracy in these periods. This poor accu-
racy likely results from the few cooling periods represented in the
training data. In cooling periods, the adaptive GBMPC violates the
comfort constraints more. In the case of the GBMPC, this behavior
results from the underdetermined parameter estimation problem.
During the observed discomfort peaks, the parameters computed
by the MHE are close to their boundaries.

The observations based on Fig. 6 are confirmed considering the
operation in the heating, cooling, and transitional period in Fig. 7.
In the peak heating season, the RL algorithm violates the comfort
constraints at the beginning and end of the occupancy period indi-
cating a higher prioritization of energy savings than the other con-
trollers. In contrast to the other controllers, the RL and the GBMPC
use the AHU to cover the base load on the weekend. Notably, the
WBMPC and the BBMPC show similar behavior in the CCA control
but large differences in theAHUcontrol. Therefore, the BBMPCprob-
ably approximates the nonlinear AHU behavior the most accurate.

In the presented cooling period, the GBMPC significantly under-
cools the system due to the inaccurate estimation of parameters.
To correct this error, the controller spends additional heating
energy. As seen before, the AMPC violates the comfort constraints
in the cooling period, due to poor approximation accuracy.

Especially during the transition period, the advanced controllers
profit from the anticipating behavior. Compared to the rule-based
controller, this leads to a smoother temperature curve and energy
savings.

Fig. 8 displays the computation times of the investigated control
algorithms. Considering the step size of 15min of the problem, all
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controllers are real-time capable with a neglectable computational
burden.When looking at the computation time to calculate the con-
trol signals for one step, the simple RB controller outperforms the
more complex approaches with an average time of less than 1ms.
Both AMPC and the RL-controller rely on evaluating one ANN,
achieving computation times of 30 to 40ms. Here, the most costly
operation is the preparation of the inputs, which heavily relies on
pandas evaluations. The SAC algorithm itself is close to the rule-
based controller in processing the state signals and obtaining the
actions. With a more efficient implementation, the computation
time of the RL and the AMPC is expected to drop significantly. The
WBMPC solves a linear optimization problem at each time step.
Nevertheless, the computation time of 100ms is comparable to
the GBMPC, which solves a linear problem and a nonlinear estima-
tion problem in 147ms and the nonlinear BBMPC with 149ms. This
is attributable to the efficient implementation of the GB- and the
BBMPC in CasADi[60], which provides are direct C++ interface to
the solvers. In contrast, the WBMPC is implemented in Pyomo
[97], which interfaces the solvers bywriting text files. Nevertheless,
formore time-critical processes, amore efficient implementation of
a linear MPC can easily reach computation times below 10ms.
6. Discussion

6.1. Performance of the algorithms

In summary, all controllers perform well on the control task,
performing better than the rule-based controller. As stated in the
literature (see Ref.,2.6), the different MPC controllers (WB, GB,
BB) achieve better results than the RL controller on this continuous
control problem. Due to its implicit learning of the underlying sub-
system controllers and the more accurate approximation of the
nonlinear AHU behavior, the online learning data-driven BBMPC
based on neural networks shows the best comfort and energy con-
sumption performance.

Nevertheless, there is still potential for improvement in the
other MPC controllers. For example, the WBMPC and GBMPC could
approximate the subsystem controllers as first-order lag elements
to increase their model accuracy. Additionally, the parameter esti-
mation of the GBMPC could be designed more robustly to avoid
estimation inaccuracies. The GB-modeling accuracy could be fur-
ther increased by considering the angle of the solar radiation to
achieve accurate prediction in the summer.

The RL strategy could be improved further by tuning the under-
lying cost function and prolonged training. The latter is also
expected to strengthen the AMPCs performance.

All algorithms require only a fraction of their control step size
and therefore are real-time feasible. As expected, the
optimization-based controllers show higher computation times.
Despite the already little computational effort, all controllers could
be implemented more efficiently to reduce the computational
effort further. Here, the preprocessing routines of the input data
could be improved. In general, the controllers should be imple-
mented in a more lightweight programming language than python.

The algorithms need a different amount of initial data to exe-
cute the control task. While the RB controller doesn’t need any



Fig. 6. Weekly discomfort and energy consumption during the simulation.

Fig. 7. Six representative days of operation in heating, cooling, and mixed operation.
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Fig. 8. Average computation time to calculate the control signals with each
controller.
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data, the GBMPC needs only 72 h of data for initial calibration. If all
material properties are perfectly known (as is the case for our sim-
ulation), the WBMPC works without any data. In a real-life applica-
tion, the WBMPC would also need data for calibration. The online
learning BBMPC needs two weeks of training data. During the
training, an excitation of the system is required to identify the sys-
tem dynamics efficiently. Since comfort constraints are considered
in the training process, only minor comfort violations occur. In a
further study, the influence of training data quality and quantity
should be investigated. The amount of required training data can
likely be further reduced. In contrast, the approximate MPC uses
one year of training data with regular MPC operation. Therefore
no significant comfort violations are caused by the data generation
for the approximate MPC. The RL controller is trained for two years
to learn the presented control strategy. Here, serious comfort vio-
lations are observed during the first half of the first year of training.

The more extensive need of training data for the approximate
MPC and the RL could be satisfied by both real measurement
(e.g. approximate MPC [23], RL [107]) and simulation data (e.g.
approximate MPC [24], RL [108]). Both training databases have
been used in scientific literature [24,23]. Yet, we highlight at this
point that one motivation to use approximate MPC and RL methods
is to avoid implementing an MPC controller in practice which is
why we recommend simulation-based approaches. Alternatively,
the transfer to similar systems, including the choice of transferable
system boundaries and the application of transfer learning (as pro-
posed by Chen et al. [109]), are promising methodological
approaches to apply simulation-based training efficiently.

These observations are based on a simulation with perfect fore-
casts and data availability. In the next section, we discuss aspects
of the practical implementation of the controllers.

6.2. Practical applicability and implementation effort

All the advanced control methods discussed in this study show
great potential to outperform conventional control strategies like
RBCs (see Fig. 5). However, to become an alternative to existing
methods, it is not only the control performance that needs to be
considered [9]. To holistically compare the presented control
methods and to consider practical applicability from model devel-
opment to implementation, we introduce the following criteria and
apply them to the methods implemented in this study:

1. Pre-operation data need: The dependence on synthetically
generated (e.g., by simulations) or existing measurement
data before actual deployment. The data is used for training
or calibration purposes. The methods depend more or less
significantly on their existence and quantity.

2. Data quality requirements: In addition to the needed data,
the quality of the measured system states and disturbances
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affects the methods’ performance. This category accounts for
forecast uncertainty (e.g., non-perfect forecast), faulty sen-
sors, and measurement inaccuracies and errors.

3. Model developing effort: This criterion accounts for the
effort an engineer faces until the model performs well. This
includes, e.g., domain analysis, mathematical formulation,
training/calibration data generation, feature engineering
and selection, hyperparameter tuning, etc. The more steps
are necessary, the higher the developing effort.

4. MIMO handling: This study presents a MIMO problem. The
methods differ in their capability to handle multiple in- and
outputs and consider interdependencies.

5. Adaptability:Methods like the adaptive gray- and black-box
MPC and the RL algorithm incorporate strategies to auto-
matically adapt to the control domain, which can be benefi-
cial for real-world applications and changing boundary
conditions. I.e., the process model’s or control model’s
parameters are adapted based on the model error or the sys-
tem’s control response.

6. IT requirements: Advanced control methods require differ-
ent sets of sophisticated hard- and software. This criterion
accounts for the necessity of, e.g., an online/cloud infrastruc-
ture, solver licenses, software, or high-performing controllers.

7. Know-how dependence: The applied methods require the
know-how of different fields, namely machine learning,
mathematical optimization, control engineering, domain
knowledge, and system modeling. We define that the more
fields are involved, the more demanding the need for expert
know-how. This criterion is also recognized as a significant
hurdle for modern control methods in practice by [24,9].

8. Interpretability: Another major hurdle for MPC applications
recognized by [24,20,21] and RL is the missing interpretabil-
ity of sophisticated control methods’ underlying models,
which leads to mistrust among commissioning engineers.
According to Afroz et al. [21], white-box models are more
interpretable, while black-box models are more easily
transferable.

9. Transferability: High transferability facilitates the broad
application of control methods as it decreases modeling
development effort (see trade-off with interpretability of
the previous criterion)[21].

10. Scalability: In this comparison, we evaluate scalability by
taking a multi-zone system consisting of multiple versions
of the assessed single office zone as an example. We explic-
itly differentiate scalability from transferability by assuming
that upscaling does not involve a domain-specific change. I.
e., an adaptation of model equations or input–output rela-
tions is not necessary.

Table 7 summarizes the qualitative comparison of the sophisti-
cated and conventional control methods. We highlight at this point
that the comparison is based on the way we implemented the
methods. In scientific literature, various modifications for each of
the presented methods exist. Consequently, the evaluation is not
suitable for generalization. For example, for RL and approximate
MPC, various training and tuning methods exist, which result in
different model-developing efforts, higher or lower interpretability
and transferability.

Regarding the need for pre-operation data, RBC and adaptive
GBMPC outperform the other approaches. While RBC does not need
any data before the operation, the adaptive GBMPC in this study
only relies on 72h of training data for initial calibration. The BBMPC
also needs a slightly higher amount of training data. In this study,
we use two weeks of training. In contrast, the approximate MPC
needs one year. At the same time, the RL method is based on three
years of synthetically generated training data. Despite the amount



Table 7
Qualitative comparison of advanced control methods which are assessed in this study. The evaluation is based on the method implementation as realized in this study and not
suitable for generalizations as different forms of method applications exists.

RB WB-
MPC

Ad. GB-
MPC

Ad. BB-
MPC

Appr. WB-
MPC

RL

Pre-operation data need + + 0 to + 0 - to 0 -
Data quality dependence 0 + 0 0 to - + -
Model dev. effort + - 0 to + 0 to + - 0 to +
MIMO handling - + + + 0 to + +
Adaptability - - 0 to + + - +
IT requirements + - - - 0 0
Know-how dependence + - 0 0 - 0
Interpretability + 0 to + 0 to + 0 to - 0 -
Transferability + - 0 + + +
Scalability + 0 to + 0 to + - 0 to + 0 to +

+ = positive, 0 = neutral, - = negative characteristic.
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of synthetic or actual sensor data, data quality affects more or less
significantly the methods’ performance.

In general, strategies relying on an interaction with the system
and not incorporating system knowledge, i.e., RL, RBC, and adaptive
BBMPC, are more strongly influenced by faulty measurement data
than approaches with system knowledge and/or no adaptability,
i.e., WB and approximate WBMPC. However, they can adjust their
parameters (of the process model (BBMPC, GBMPC) or the con-
troller model (RL)) over time and account for prior modeling errors,
changes in the target system, unseen boundary conditions or
states, etc. For example, the RBC relies on a limited number of
inputs. Consequently, measurement errors within these inputs
have a stronger effect on the controller’s output compared to,
e.g., the WBMPC, using a detailed system or process model. In a
real-life application, the latter requires a state estimator, like a Kal-
man Filter or an MHE, to estimate unmeasured states, distur-
bances, and modeling errors. Hence, one faulty sensor does not
affect the control performance as significantly.

Apart from that, self-adaptation, or online learning, and the reli-
ance on black-box instead of white-box modeling generally facili-
tate model development. RBC is only subject to tuning for actual
operation and does not necessarily rely on prior model develop-
ment, even though studies dealing with model-based RBC develop-
ment have already been successfully presented. The adaptive BB
and GBMPC, as well as the RL method, all include self-adaptation
to the control domain. Thus, the model development effort is
reduced to calibration and hyperparameter tuning. The same
applies to the approximate MPC approach when considering the
method itself. However, as it bases on the optimal operation of
the WBMPC controller, which has a high model development
effort, the overall effort is high.

Regarding handling MIMO problems like the one presented in
this study, sophisticated control methods dominate the traditional
RBC. Only the approximate WBMPC might have difficulties, includ-
ing the interactions between manipulated variables. Still, they can
be included in the training process. A significant advantage of sta-
tistical models is the ability to adapt automatically to the control
domain. In this work, the adaptive GB and BB and the RL method
exploit this advantage. This is especially important if boundary
conditions or system characteristics change over time. Still, it
comes at the expense of higher IT requirements.

Considering the IT requirements, the conventional RBC per-
forms best, followed by the approximate WBMPC. While the adap-
tive GB and BBMPC both require a stable data infrastructure,
advanced computer hardware as well as solvers with (often) com-
mercial licenses, the approximate MPC and the RL can potentially
be more easily deployed on low-level controllers using simplified
software (also see Fig. 8). In our use case, both RL and AMPC also
rely on forecasts of the disturbances, making an online data infras-
tructure for forecast incorporation crucial. This limits the theoret-
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ical advantage of a more simple infrastructure. Future studies
should evaluate the trade-off between a simpler offline data infras-
tructure and the potential performance loss.

As described above, we evaluate the dependence on expert
know-how based on the number of areas covered by the method-
ology. Here, RBC outperforms the sophisticated control methods.
As methods like the adaptive GB-, BBMPC, and RL omit or tremen-
dously reduce the effort of generating a process model by experts,
they are categorized with a ‘‘0”. If a modularized, software-
framework for the controller generation is available, the effort
could be reduced further. All areas mentioned above need to be
considered for the WB-based approaches, which is why they are
rated with ‘‘-”. Furthermore, missing interpretability or compre-
hensibility has been detected as a major hurdle for MPC applica-
tions in practice [24,20,21].

However, we further differentiate the different approaches as
the underlying model structure or methodological setup limits or
supports interpretability. RL results in the biggest ANN (2 layers
of 64 neurons) and is solely based on a BB model. Theoretically,
the decision policy could be visualized, but it involves compara-
tively high effort [110]. The adaptive BBMPC is based on online
learning and a BB model. Even though the underlying ANN is much
smaller than the RL one, experts need to carefully analyze whether
the decision is based on a faulty adapted process model or the opti-
mization logic, resulting in a rather complex task. For the AMPC,
feature selection which forms the basis of interpretability, is a
challenge due to the missing link between open- and closed-loop
performance. So even if the machine learning algorithm finds
strong correlations and thus interpretability between the features
and the control variables, it does not necessarily lead to good con-
trol performance. Even though the approximate WBMPC relies on a
WB approach which is more comprehensive than a BB one, the
control logic is learned by an ANN of a medium complex structure,
limiting interpretability. Yet, we like to highlight at this point that
research in AMPC partially focuses on the interpretability of the
resulting BB model. In this case, however, tree-based BB models
are used [24]. Apart from this, while the RBC is characterized by
high interpretability, transferability to, e.g., a similar system is
trickier due to a higher tuning effort. Here, the self-adapting BB-
based methods are favorable. The WBMPC involves a unique
detailed process model which limits the transferability to other
systems. Finally, the conventional RBC is most suitable when it
comes to scalability to a multi-zone approach with equal zones
as it just involves re-tuning, if any. The remaining approaches are
all evaluated similarly except for the adaptive BBMPC. The former
all require, if any, more complex parameter adaptions (WBMPC,
adaptive GBMPC) or retraining (RL, approximate WBMPC), but
the methods are scalable. Regarding the BBMPC, Bünning et al.
[59] highlight infeasibilities of ANN-based optimization for non-
convex problems limiting the scalability.
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7. Conclusion

This paper presents a holistic quantitative and qualitative com-
parison of popular advanced control methods. Based on the state of
research (see Section 2), we included a white-box (Subsection 4.2),
an adaptive gray-box (Subsection 4.3), an adaptive black-box (Sub-
section 4.4) and an approximate white-box MPC (Subsection 4.5)
as well as a reinforcement learning-based controller (Subsection
4.6) in a comparative analysis. The advanced control methods are
benchmarked with a rule-based controller representing a sophisti-
cated state-of-the-art controller (Subsection 4.1). The rule-based
controller is well-tuned and is designed to exploit the system’s
flexibilities, like the more advanced controllers.

Consequently, we provide a fair benchmark and do not degrade
the conventional benchmark. We applied all methods to a
Modelica-based simulation model of a single-zone office (Se ction
3) based on ASHRAE 140 and 900 and evaluate them based on
the resulting annual discomfort and energy consumption. The
office’s energy system comprises an air handling unit and concrete
core activation. As control outputs, the air handling unit’s set tem-
perature, and the concrete core activation’s set heat flow are inves-
tigated, resulting in a multi–input–multi–output problem. In
addition to the rather quantitative key performance indicators
(see Subsection 6.1), we also compare the methods based on soft
criteria (see Subsection 6.2). The results indicate that all advanced
control methods outperform the conventional rule-based con-
troller regarding discomfort and energy consumption. Among the
advanced controllers, the adaptive black-box MPC approach per-
forms best. Compared to the well-tuned, rule-based controller,
energy savings between 4.9% (approximate white-box MPC) and
8.4% (adaptive black-box MPC) are realized (see Fig. 5).

Furthermore, we observe a reduction in thermal discomfort
between a minimum of 7.8% (approximate white-box MPC) and
83.8% (adaptive black-box MPC). The performance of the non-
adaptive black-box MPC, the reinforcement learning-based con-
troller, and the adaptive gray-box MPC is similar. The white-box
MPC yields the second lowest discomfort and energy consumption.
At the same time, the approximate white-box MPC results in the
highest discomfort and energy consumption among the advanced
control methods. We highlight, at this point, that the performance
of all controllers could be enhanced, which could potentially lead
to a shift in results. While the white-box MPC could also incorpo-
rate the local controllers, the other methods (adaptive black- and
gray-box and approximate white-box MPC as well as reinforce-
ment learning) could benefit from an adaption in the training
and tuning process. Considering the average computation time
for a single control step, the conventional rule-based controller
clearly outperforms the advanced methods (see Fig. 8). While the
reinforcement-learning based and the approximate MPC controller
yield medium computation times, the other MPC approaches all
result in higher computation times. We highlight, at this point, that
all controllers are real-time applicable as the longest control step
computation time is below 0.3s. Considering a control sampling
time of 15min, the real-time applicability is proven. To evaluate
the methods’ development to deployment cycle, we included addi-
tional characteristics upon which the methods are compared
(Table 7). Here, we detect a trend that the methods that greatly
depend on expert knowledge (especially white-box MPC and rein-
forcement learning) and have a high need for advanced hard- and
software infrastructure (especially adaptive gray- and black-box
MPC) result in lower energy consumption and discomfort. There-
fore, the higher development effort is rewarded. Even though the
rule-based controller results in the highest discomfort and energy
consumption, it is favorable from a modeling development, IT
17
infrastructure, interpretability, and expert knowledge dependence
point of view. The approximate MPC approach is a compromise
between a simple low-tech controller which can be deployed with-
out extensive expert know-how but does not exploit a system’s full
performance potential and the more sophisticated white-box,
adaptive gray-box, and (adaptive) black-box MPC-based as well
as the reinforcement-learning-based controllers. However, the
approximate MPC relies on prior model development to develop,
as in our case, the white-box MPC. For future studies, we recom-
mend applying the comparative analysis of the advanced control
methods to other systems. As a use case, we used a single-zone
office whose heating and cooling demand is covered by two sys-
tems: an air handling unit and a concrete core activation, respec-
tively. As this represents a multi-output problem with systems of
different inertia, we recommend future work to apply the pre-
sented methodology to a single-output system. Especially for the
rule-based, reinforcement learning and approximate MPC con-
troller, we expect a better performance due to simplified tuning.
Apart from that, we suggest adopting the approach and applying
it to a more standardized use case. Here, we see great potential
in utilizing the BOPTEST framework as it provides standardized
benchmarks and performance measures [90]. In addition, we pro-
pose to apply all methods to a real building based on actual mea-
surement data and the inherent measurement errors. Plus, the
effect of forecast uncertainty using real-life forecasts and actual
disturbance variables on all methods should be investigated.
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Table 8
Features included in training process and finally selected ones for approximate MPC model.

DTAHU;set _QCCA;set

Features provided selec. lag lead selec. lag lead

State variables lag lead

Tair;in 1–4 2,4 x 1–4
Tair;sup 1–4 x 1–4 x 1–4
Tair;zone 1–4 x 1–4 x 1–4
_Q cold 1–4 x 1 x 1–4
_Qheat 1–4 x 1,4 x 1–4
_Qhydr 1–4 x 1–4 x 1–4

Disturbance variables
schedule light x
schedule devices x x
schedule human x x
Tambient 1–4 1–4 4 1–4 x 1–4
_Qglo;hor x x

rel. humidity x x
sol. altitude angle 1–4 2–4 2–4 x 1–4
sol. declination angle x x
sol. hourly angle x x
sol. time x
sol. zenith angle x x
wind direction x x
wind speed x

Synthetic features
time of day x x
weekday x x

Controller specific
Tair;ub x x
Tair;lb x
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[68] M. Klaučo, J. Drgoňa, M. Kvasnica, S. Di Cairano, Building temperature control
by simple mpc-like feedback laws learned from closed-loop data, IFAC
Proceedings Volumes 47 (3) (2014) 581–586, https://doi.org/10.3182/
20140824-6-ZA-1003.01633.
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